Sunday, March 18, 2012

March 15,2012


AIM: How do we find the area of parallelograms, kite and trapezoids ?

PARALLELOGRAM:
To find the area of a parallelogram
is like finding the are of a rectangle .


For the parallelogram we need to first cut a line in the parallelogram where it forms a triangle. in the image to the left parallelogram ABED we cut a line from A to C with that forming triangle we place the triangle to the other side forming a rectangle ACFD.

FORMULA: B x H
-----------------------------------------------------------
[IMAGE] EXAMPLE:
Find the are of a parallelogram with a base of 12 centimeters
and a height of 5 centimeters.

First : Apply the formula
A=B*H
Then : plug in the base and height:
A=12*5
solve the equation:
A= 60cm2
------------------------------------------------------------------------------
TRAPEZOID :
[IMAGE] 
   Formula :   A= (B1+B2)H
                                2
B stands for base
H for height
A for area
-----------------------------------------------------------------------------
Example:
[IMAGE]         
First:
 write the formula :
A= ( B1+B2)H
            2
Plug in numbers:
A= (10+14)5
          2
Solve :
A=( 24)5 
        2
A= 120
       2
A= 60 in2
------------------------------------------------------------------------------
Kite:


WHAT THE PICTURE SHOWS:

  • it shows the formula for the are of a kite
  •  D1 and D2 of the kite are shown.
-------------------------------------------------------------------------------

EXAMPLE:

First:
 rewrite the formula : A= D1*D2
                                          2
SECOND: PLUG IT IN
A= D1+D2 
          2  
A= 10*2
       2  
 Solve the equation :
A= 20 = 10
      2
Answer
A=10
------------------------------------------------------------------------------
TRY IT:


Find the area of the kite. Measurements shown are in cm. [Given x = 12 and y = 16.]

Sources used :
Try it :
http://www.icoachmath.com/math_dictionary/Kite.html
 kite: http://www.k6-geometric-shapes.com/image-files/formula-area-kite.jpg 
Trapezoid: 

http://www.mathgoodies.com/lessons/vol1/area_trapezoid.html
Parallelogram:

1 comment: